Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Sleep Sci ; 14(4): 366-369, 2021.
Article in English | MEDLINE | ID: covidwho-1592589

ABSTRACT

SARS-COV-2 is a highly pathogenic coronavirus that causes the disease known as COVID-19, which has infected more than 100 million people worldwide. The main form of containment of the pandemic is social isolation. However the isolation, the severity of the COVID-19 disease, the uncertainty of the future and the economic impact are the possible causes of anxiety as an adverse effect of the pandemic. The literature describes the possible association between anxiety with poor sleep quality, exacerbation of painful conditions, gastroesophageal reflux disease, increased consumption of drugs and the possibility of developing or enhancing sleep bruxism. Health professionals should keep in mind the possibility of overlapping with the different clinical conditions mentioned and the need for a multi-professional team to manage these patients.

2.
Front Public Health ; 9: 589564, 2021.
Article in English | MEDLINE | ID: covidwho-1278462

ABSTRACT

Background: Coronavirus disease 2019 (COVID-19) is a global health problem, which is challenging healthcare worldwide. In this critical review, we discussed the advantages and limitations in the implementation of salivary diagnostic platforms of COVID-19. The diagnostic test of COVID-19 by invasive nasopharyngeal collection is uncomfortable for patients and requires specialized training of healthcare professionals in order to obtain an appropriate collection of samples. Additionally, these professionals are in close contact with infected patients or suspected cases of COVID-19, leading to an increased contamination risk for frontline healthcare workers. Although there is a colossal demand for novel diagnostic platforms with non-invasive and self-collection samples of COVID-19, the implementation of the salivary platforms has not been implemented for extensive scale testing. Up to date, several cross-section and clinical trial studies published in the last 12 months support the potential of detecting SARS-CoV-2 RNA in saliva as a biomarker for COVID-19, providing a self-collection, non-invasive, safe, and comfortable procedure. Therefore, the salivary diagnosis is suitable to protect healthcare professionals and other frontline workers and may encourage patients to get tested due to its advantages over the current invasive methods. The detection of SARS-CoV-2 in saliva was substantial also in patients with a negative nasopharyngeal swab, indicating the presence of false negative results. Furthermore, we expect that salivary diagnostic devices for COVID-19 will continue to be used with austerity without excluding traditional gold standard specimens to detect SARS-CoV-2.


Subject(s)
COVID-19 , RNA, Viral , Humans , SARS-CoV-2 , Saliva , Specimen Handling
3.
Neurosci Biobehav Rev ; 124: 216-223, 2021 05.
Article in English | MEDLINE | ID: covidwho-1071801

ABSTRACT

Multiple neurological problems have been reported in coronavirus disease-2019 (COVID-19) patients because severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) likely spreads to the central nervous system (CNS) via olfactory nerves or through the subarachnoid space along olfactory nerves into the brain's cerebrospinal fluid and then into the brain's interstitial space. We hypothesize that SARS-CoV-2 enters the subfornical organ (SFO) through the above routes and the circulating blood since circumventricular organs (CVOs) such as the SFO lack the blood-brain barrier, and infection of the SFO causes dysfunction of the hypothalamic paraventricular nucleus (PVN) and supraoptic nucleus (SON), leading to hydroelectrolytic disorder. SARS-CoV-2 can readily enter SFO-PVN-SON neurons because these neurons express angiotensin-converting enzyme-2 receptors and proteolytic viral activators, which likely leads to neurodegeneration or neuroinflammation in these regions. Considering the pivotal role of SFO-PVN-SON circuitry in modulating hydroelectrolyte balance, SARS-CoV-2 infection in these regions could disrupt the neuroendocrine control of hydromineral homeostasis. This review proposes mechanisms by which SARS-CoV-2 infection of the SFO-PVN-SON pathway leads to hydroelectrolytic disorder in COVID-19 patients.


Subject(s)
COVID-19/complications , Paraventricular Hypothalamic Nucleus/pathology , Subfornical Organ/pathology , Water-Electrolyte Imbalance/etiology , Animals , COVID-19/pathology , Humans , Paraventricular Hypothalamic Nucleus/virology , Power Plants , Subfornical Organ/virology , Water-Electrolyte Imbalance/virology
4.
Front Physiol ; 11: 587013, 2020.
Article in English | MEDLINE | ID: covidwho-1000129

ABSTRACT

Novel coronavirus disease (COVID-19) is an infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Its impact on patients with comorbidities is clearly related to fatality cases, and diabetes has been linked to one of the most important causes of severity and mortality in SARS-CoV-2 infected patients. Substantial research progress has been made on COVID-19 therapeutics; however, effective treatments remain unsatisfactory. This unmet clinical need is robustly associated with the complexity of pathophysiological mechanisms described for COVID-19. Several key lung pathophysiological mechanisms promoted by SARS-CoV-2 have driven the response in normoglycemic and hyperglycemic subjects. There is sufficient evidence that glucose metabolism pathways in the lung are closely tied to bacterial proliferation, inflammation, oxidative stress, and pro-thrombotic responses, which lead to severe clinical outcomes. It is also likely that SARS-CoV-2 proliferation is affected by glucose metabolism of type I and type II cells. This review summarizes the current understanding of pathophysiology of SARS-CoV-2 in the lung of diabetic patients and highlights the changes in clinical outcomes of COVID-19 in normoglycemic and hyperglycemic conditions.

SELECTION OF CITATIONS
SEARCH DETAIL